Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Food Chem Toxicol ; : 113511, 2022 Nov 27.
Article in English | MEDLINE | ID: covidwho-2242296

ABSTRACT

The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. The current study identifies eighty immune system dysfunction-enabling toxic stressors and behaviors (hereafter called modifiable contributing factors (CFs)) that also link directly to COVID-19. Each CF is assigned to one of the five categories in the CF taxonomy shown in Section 3.3.: Lifestyle (e.g., diet, substance abuse); Iatrogenic (e.g., drugs, surgery); Biotoxins (e.g., micro-organisms, mycotoxins); Occupational/Environmental (e.g., heavy metals, pesticides); Psychosocial/Socioeconomic (e.g., chronic stress, lower education). The current study shows how each modifiable factor contributes to decreased immune system capability, increased inflammation and coagulation, and increased neural damage and neurodegeneration. It is unclear how real progress can be made in combatting COVID-19 and other similar diseases caused by viral variants without addressing and eliminating these modifiable CFs.

2.
Int J Mol Med ; 46(1): 3-16, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-2225841

ABSTRACT

In the current context of the pandemic triggered by SARS-COV-2, the immunization of the population through vaccination is recognized as a public health priority. In the case of SARS­COV­2, the genetic sequencing was done quickly, in one month. Since then, worldwide research has focused on obtaining a vaccine. This has a major economic impact because new technological platforms and advanced genetic engineering procedures are required to obtain a COVID­19 vaccine. The most difficult scientific challenge for this future vaccine obtained in the laboratory is the proof of clinical safety and efficacy. The biggest challenge of manufacturing is the construction and validation of production platforms capable of making the vaccine on a large scale.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/classification , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Drug Compounding/methods , Drug Compounding/standards , Drug Compounding/trends , Drug Development/methods , Drug Development/standards , Drug Development/trends , Humans , Patient Safety , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , SARS-CoV-2 , Treatment Outcome , Vaccination/adverse effects , Vaccine Potency , Viral Vaccines/classification , Viral Vaccines/standards , Viral Vaccines/supply & distribution , Viral Vaccines/therapeutic use
4.
Oncol Rep ; 47(1)2022 Jan.
Article in English | MEDLINE | ID: covidwho-1518658

ABSTRACT

The devastating complications of coronavirus disease 2019 (COVID­19) result from the dysfunctional immune response of an individual following the initial severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS­CoV­2 exploits the dysfunctional immune system to trigger a chain of events, ultimately leading to COVID­19. The authors have previously identified a number of contributing factors (CFs) common to myriad chronic diseases. Based on these observations, it was hypothesized that there may be a significant overlap between CFs associated with COVID­19 and gastrointestinal cancer (GIC). Thus, in the present study, a streamlined dot­product approach was used initially to identify potential CFs that affect COVID­19 and GIC directly (i.e., the simultaneous occurrence of CFs and disease in the same article). The nascent character of the COVID­19 core literature (~1­year­old) did not allow sufficient time for the direct effects of numerous CFs on COVID­19 to emerge from laboratory experiments and epidemiological studies. Therefore, a literature­related discovery approach was used to augment the COVID­19 core literature­based 'direct impact' CFs with discovery­based 'indirect impact' CFs [CFs were identified in the non­COVID­19 biomedical literature that had the same biomarker impact pattern (e.g., hyperinflammation, hypercoagulation, hypoxia, etc.) as was shown in the COVID­19 literature]. Approximately 2,250 candidate direct impact CFs in common between GIC and COVID­19 were identified, albeit some being variants of the same concept. As commonality proof of concept, 75 potential CFs that appeared promising were selected, and 63 overlapping COVID­19/GIC potential/candidate CFs were validated with biological plausibility. In total, 42 of the 63 were overlapping direct impact COVID­19/GIC CFs, and the remaining 21 were candidate GIC CFs that overlapped with indirect impact COVID­19 CFs. On the whole, the present study demonstrates that COVID­19 and GIC share a number of common risk/CFs, including behaviors and toxic exposures, that impair immune function. A key component of immune system health is the removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.


Subject(s)
COVID-19/epidemiology , Gastrointestinal Neoplasms/epidemiology , COVID-19/etiology , COVID-19/immunology , Gastrointestinal Neoplasms/etiology , Gastrointestinal Neoplasms/immunology , Humans , Risk Factors , SARS-CoV-2/physiology , Socioeconomic Factors
5.
Toxicol Rep ; 8: 1981, 2021.
Article in English | MEDLINE | ID: covidwho-1458671

ABSTRACT

[This corrects the article DOI: 10.1016/j.toxrep.2021.08.010.].

6.
Toxicol Rep ; 8: 1665-1684, 2021.
Article in English | MEDLINE | ID: covidwho-1428525

ABSTRACT

This article examines issues related to COVID-19 inoculations for children. The bulk of the official COVID-19-attributed deaths per capita occur in the elderly with high comorbidities, and the COVID-19 attributed deaths per capita are negligible in children. The bulk of the normalized post-inoculation deaths also occur in the elderly with high comorbidities, while the normalized post-inoculation deaths are small, but not negligible, in children. Clinical trials for these inoculations were very short-term (a few months), had samples not representative of the total population, and for adolescents/children, had poor predictive power because of their small size. Further, the clinical trials did not address changes in biomarkers that could serve as early warning indicators of elevated predisposition to serious diseases. Most importantly, the clinical trials did not address long-term effects that, if serious, would be borne by children/adolescents for potentially decades. A novel best-case scenario cost-benefit analysis showed very conservatively that there are five times the number of deaths attributable to each inoculation vs those attributable to COVID-19 in the most vulnerable 65+ demographic. The risk of death from COVID-19 decreases drastically as age decreases, and the longer-term effects of the inoculations on lower age groups will increase their risk-benefit ratio, perhaps substantially.

7.
Toxicol Rep ; 8: 1616-1637, 2021.
Article in English | MEDLINE | ID: covidwho-1377846

ABSTRACT

The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. We have previously identified many contributing factors (CFs) (representing toxic exposure, lifestyle factors and psychosocial stressors) common to myriad chronic diseases. We hypothesized significant overlap between CFs associated with COVID-19 and inflammatory bowel disease (IBD), because of the strong role immune dysfunction plays in each disease. A streamlined dot-product approach was used to identify potential CFs to COVID-19 and IBD. Of the fifty CFs to COVID-19 that were validated for demonstration purposes, approximately half had direct impact on COVID-19 (the CF and COVID-19 were mentioned in the same record; i.e., CF---→COVID-19), and the other half had indirect impact. The nascent character of the COVID-19 core literature (∼ one year old) did not allow sufficient time for the direct impacts of many CFs on COVID-19 to be identified. Therefore, an immune system dysfunction (ID) literature directly related to the COVID-19 core literature was used to augment the COVID-19 core literature and provide the remaining CFs that impacted COVID-19 indirectly (i.e., CF---→immune system dysfunction---→COVID-19). Approximately 13000 potential CFs for myriad diseases (obtained from government and university toxic substance lists) served as the starting point for the dot-product identification process. These phrases were intersected (dot-product) with phrases extracted from a PubMed-derived IBD core literature, a nascent COVID-19 core literature, and the COVID-19-related immune system dysfunction (ID) core literature to identify common ID/COVID-19 and IBD CFs. Approximately 3000 potential CFs common to both ID and IBD, almost 2300 potential CFs common to ID and COVID-19, and over 1900 potential CFs common to IBD and COVID-19 were identified. As proof of concept, we validated fifty of these ∼3000 overlapping ID/IBD candidate CFs with biologic plausibility. We further validated 24 of the fifty as common CFs in the IBD and nascent COVID-19 core literatures. This significant finding demonstrated that the CFs indirectly related to COVID-19 -- identified with use of the immune system dysfunction literature -- are strong candidates to emerge eventually as CFs directly related to COVID-19. As discussed in the main text, many more CFs common to all these core literatures could be identified and validated. ID and IBD share many common risk/contributing factors, including behaviors and toxic exposures that impair immune function. A key component to immune system health is removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.

8.
Toxicological Risk Assessment and Multi-System Health Impacts from Exposure ; : 359-372, 2021.
Article in English | PMC | ID: covidwho-1343091
9.
Toxicol Rep ; 8: 1-9, 2021.
Article in English | MEDLINE | ID: covidwho-957451

ABSTRACT

COVID-19 pandemic mitigation strategies are mainly based on social distancing measures and healthcare system reinforcement. However, many countries in Europe and elsewhere implemented strict, horizontal lockdowns because of extensive viral spread in the community which challenges the capacity of the healthcare systems. However, strict lockdowns have various untintended adverse social, economic and health effects, which have yet to be fully elucidated, and have not been considered in models examining the effects of various mitigation measures. Unlike commonly suggested, the dilemma is not about health vs wealth because the economic devastation of long-lasting lockdowns will definitely have adverse health effects in the population. Furthermore, they cannot provide a lasting solution in pandemic containment, potentially resulting in a vicious cycle of consecutive lockdowns with in-between breaks. Hospital preparedness has been the main strategy used by governments. However, a major characteristic of the COVID-19 pandemic is the rapid viral transmission in populations with no immunity. Thus, even the best hospital system could not cope with the demand. Primary, community and home care are the only viable strategies that could achieve the goal of pandemic mitigation. We present the case example of Greece, a country which followed a strategy focused on hospital preparedness but failed to reinforce primary and community care. This, along with strategic mistakes in epidemiological surveillance, resulted in Greece implementing a second strict, horizontal lockdown and having one of the highest COVID-19 death rates in Europe during the second wave. We provide recommendations for measures that will reinstate primary and community care at the forefront in managing the current public health crisis by protecting hospitals from unnecessary admissions, providing primary and secondary prevention services in relation to COVID-19 and maintaining population health through treatment of non-COVID-19 conditions. This, together with more selective social distancing measures (instead of horizontal lockdowns), represents the only viable and realistic long-term strategy for COVID-19 pandemic mitigation.

10.
Toxicol Rep ; 7: 1448-1458, 2020.
Article in English | MEDLINE | ID: covidwho-894246

ABSTRACT

A degraded/dysfunctional immune system appears to be the main determinant of serious/fatal reaction to viral infection (for COVID-19, SARS, and influenza alike). There are four major approaches being employed or considered presently to augment or strengthen the immune system, in order to reduce adverse effects of viral exposure. The three approaches that are focused mainly on augmenting the immune system are based on the concept that pandemics/outbreaks can be controlled/prevented while maintaining the immune-degrading lifestyles followed by much of the global population. The fourth approach is based on identifying and introducing measures aimed at strengthening the immune system intrinsically in order to minimize future pandemics/outbreaks. Specifically, the four measures are: 1) restricting exposure to virus; 2) providing reactive/tactical treatments to reduce viral load; 3) developing vaccines to prevent, or at least attenuate, the infection; 4) strengthening the immune system intrinsically, by a) identifying those factors that contribute to degrading the immune system, then eliminating/reducing them as comprehensively, thoroughly, and rapidly as possible, and b) replacing the eliminated factors with immune-strengthening factors. This paper focuses on vaccine safety. A future COVID-19 vaccine appears to be the treatment of choice at the national/international level. Vaccine development has been accelerated to achieve this goal in the relatively near-term, and questions have arisen whether vaccine safety has been/is being/will be compromised in pursuit of a shortened vaccine development time. There are myriad mechanisms related to vaccine-induced, and natural infection-induced, infections that could adversely impact vaccine effectiveness and safety. This paper summarizes many of those mechanisms.

11.
Int J Mol Med ; 46(5): 1599-1602, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-807275

ABSTRACT

In response to the SARS­CoV­2 outbreak, and the resulting COVID­19 pandemic, a global competition to develop an anti­COVID­19 vaccine has ensued. The targeted time frame for initial vaccine deployment is late 2020. The present article examines whether short­term, mid­term, and long­term vaccine safety can be achieved under such an accelerated schedule, given the myriad vaccine­induced mechanisms that have demonstrated adverse effects based on previous clinical trials and laboratory research. It presents scientific evidence of potential pitfalls associated with eliminating critical phase II and III clinical trials, and concludes that there is no substitute currently available for long­term human clinical trials to ensure long­term human safety.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/immunology , Animals , COVID-19/economics , COVID-19 Vaccines/economics , Clinical Trials as Topic , Cost-Benefit Analysis , Humans
12.
Food Chem Toxicol ; 145: 111687, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-713649

ABSTRACT

Coronavirus disease 2019 (COVID-19) and previous pandemics have been viewed almost exclusively as virology problems, with toxicology problems mostly being ignored. This perspective is not supported by the evolution of COVID-19, where the impact of real-life exposures to multiple toxic stressors degrading the immune system is followed by the SARS-CoV-2 virus exploiting the degraded immune system to trigger a chain of events ultimately leading to COVID-19. This immune system degradation from multiple toxic stressors (chemical, physical, biological, psychosocial stressors) means that attribution of serious consequences from COVID-19 should be made to the virus-toxic stressors nexus, not to any of the nexus constituents in isolation. The leading toxic stressors (identified in this study as contributing to COVID-19) are pervasive, contributing to myriad chronic diseases as well as immune system degradation. They increase the likelihood for comorbidities and mortality associated with COVID-19. For the short-term, tactical/reactive virology-focused treatments are of higher priority than strategic/proactive toxicology-focused treatments, although both could be implemented in parallel to reinforce each other. However, for long-term pandemic prevention, toxicology-based approaches should be given higher priority than virology-based approaches. Since current COVID-19 treatments globally ignore the toxicology component almost completely, only limited benefits can be expected from these treatments.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Hazardous Substances/adverse effects , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , COVID-19 , Coronavirus Infections/etiology , Coronavirus Infections/psychology , Healthy Lifestyle , Humans , Pneumonia, Viral/etiology , Pneumonia, Viral/psychology , Quarantine , SARS-CoV-2
13.
Int J Mol Med ; 46(2): 463-466, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-647885

ABSTRACT

Since March, 2020, in response to the COVID­19 pandemic, many countries have been on lockdown (at different levels of severity), restricting many activities and businesses that involve gatherings of large numbers of people in close proximity. Currently (early June, 2020), countries across the globe are in different stages of easing lockdown restrictions. Public policies for behaviors and actions during this transition period vary widely across countries and within country jurisdictions. The present editorial will address potential policies that could minimize resurgence of the present pandemic (the 'second­wave') and reduce the likelihood and severity of similar future pandemics.


Subject(s)
COVID-19/prevention & control , SARS-CoV-2/pathogenicity , Communicable Disease Control , Humans , Pandemics
14.
Food Chem Toxicol ; 141: 111418, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-345861

ABSTRACT

Occupational, residential, dietary and environmental exposures to mixtures of synthetic anthropogenic chemicals after World War II have a strong relationship with the increase of chronic diseases, health cost and environmental pollution. The link between environment and immunity is particularly intriguing as it is known that chemicals and drugs can cause immunotoxicity (e.g., allergies and autoimmune diseases). In this review, we emphasize the relationship between long-term exposure to xenobiotic mixtures and immune deficiency inherent to chronic diseases and epidemics/pandemics. We also address the immunotoxicologic risk of vulnerable groups, taking into account biochemical and biophysical properties of SARS-CoV-2 and its immunopathological implications. We particularly underline the common mechanisms by which xenobiotics and SARS-CoV-2 act at the cellular and molecular level. We discuss how long-term exposure to thousand chemicals in mixtures, mostly fossil fuel derivatives, exposure toparticle matters, metals, ultraviolet (UV)-B radiation, ionizing radiation and lifestyle contribute to immunodeficiency observed in the contemporary pandemic, such as COVID-19, and thus threaten global public health, human prosperity and achievements, and global economy. Finally, we propose metrics which are needed to address the diverse health effects of anthropogenic COVID-19 crisis at present and those required to prevent similar future pandemics.


Subject(s)
Air Pollutants/toxicity , Betacoronavirus , Coronavirus Infections/epidemiology , Pesticides/toxicity , Pneumonia, Viral/epidemiology , Xenobiotics/toxicity , Animals , Antiviral Agents/therapeutic use , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Diet , Epidemics , Humans , Immune System/drug effects , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/physiopathology , Prevalence , Receptors, Aryl Hydrocarbon/metabolism , Risk Factors , SARS-CoV-2 , Signal Transduction/drug effects , Time
15.
Mol Med Rep ; 22(1): 20-32, 2020 07.
Article in English | MEDLINE | ID: covidwho-165049

ABSTRACT

Italy is currently one of the countries seriously affected by the COVID­19 pandemic. As per 10 April 2020, 147,577 people were found positive in a total of 906,864 tests performed and 18,849 people lost their lives. Among all cases, 70.2% of positive, and 79.4% of deaths occurred in the provinces of Northern Italy (Lombardi, Emilia Romagna, Veneto and Piemonte), where the outbreak first started. Originally, it was considered that the high number of positive cases and deaths in Italy resulted from COVID­19 initially coming to Italy from China, its presumed country of origin. However, an analysis of the factors that played a role in the extent of this outbreak is needed. Evaluating which factors could be specific for a country and which might contribute the most is nevertheless complex, with accompanying high uncertainty. The purpose of this work is to discuss some of the possible contributing factors and their possible role in the relatively high infection and death rates in Northern Italy compared to other areas and countries.


Subject(s)
COVID-19/epidemiology , Disease Outbreaks , Humans , Italy/epidemiology , Pandemics , Risk Factors , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL